

Komunikacja sterownika Emerson z wyspą Astraada IO po Modbus TCP

Konfiguracja połączenia modułu AS70-R-MP-08DIO-P-M12 ze sterownikiem RSTi-EP CPE210

SPIS TREŚCI

Wstęp	2
Import Biblioteki Bloków komunikacyjnych	3
Utworzenie projektu	3
Import biblioteki	3
Konfiguracja Modułu Astraada IO	5
Zmiana protokołu z wykorzystaniem programu Astraada IO Configuration Tool	5
Konfiguracja projektu w PAC Machine Edition	7
Konfiguracja portu Ethernet	7
Konfiguracja połączenia Modbus TCP	8
Konfiguracja danych do wymiany	. 11
Potwierdzenie komunikacji	. 13

WSTĘP

W informatorze opisano krok po kroku sposób konfiguracji połączenia Modbuc TCP sterownika Emerson z multiprotokołową wyspą Astraada IO. W tym przykładzie wykorzystano sterownik PACSystems RSTi-EP CPE210 wyspę Astraada IO AS70-R-MP-08DIO-P-M12 oraz oprogramowanie PAC Machine Edition 10.4.

W celu ułatwienia konfiguracji firma Astor przygotowała dedykowane bloki do odczytu/zapisu danych w protokole Modbus TCP.

_	KANAL TCP RW		KANAL TCP R		KANAL TCP W	
•	K1	${\bf r}_{\rm eff} = {\bf r}_{\rm eff}$	K2	1 .	K3	
	NR ETH	 	NR ETH		NR ETH	-
-	IP1 Liczr		IP1 Liczr	 	IP1 Liczr	_
-	IP2 Komi		IP2 Komi		IP2 Kom	_
	IP3 FAUI		IP3 FAUI		IP3 FAU)	_
-	IP4		IP4		IP4	
-	Unit_	· .	Unit_		Unit_	
_	Num	_	Num	_	Num)	

Do obsługi pojedynczego kanału Modbus TCP klient został przygotowany własny blok funkcyjny.

Występuje on w trzech wariantach:

- Zarówno do odczytu i zapisu danych na pojedynczym kanale (nazwa bloku Kanal_TCP_RW),
- Tylko do odczytu danych (Kanal_TCP_R),
- Tylko do zapisu danych na kanale (Kanal_TCP_W).

Proces importu bloków został opisany w następnej części dokumentu.

IMPORT BIBLIOTEKI BLOKÓW KOMUNIKACYJNYCH

Utworzenie projektu

W tym przykładzie stworzono projekt według standardowego szablonu dla sterowników RSTi-EP.

New Project			
Enter a name for the new project: Select a folder:	AstraadaIO_Profinet_CPE210 My Computer	-	Create Project Create a new project using the selected template, or default if no
Default Template:	PACSystems RX3i		template is selected.
Template Category:	PACSystems Templates	· C	Sat Tamplata
Template:	PACSystems RSTI-EP	<u> </u> 世	Set the default template to use for new projects.
<u>(</u>) (%) (%)) (3)		

Import biblioteki

Plik .ZDRW jest dostępny do bezpłatnego pobrania na <u>stronie internetowej wsparcia firmy Astor</u> (Wsparcie -> Emerson -> PACSystems RX3i).

Modbus TCP klient w kontrolerach PACSystems, blok funkcyjny do obsługi pojedynczego kanału TCP «Włóć do dokumentacji					
W załączniku do artykułu znajduje się opis, przykładowy projekt i biblioteka do obsługi komunikacji Modłus TCP na pojedynczym kanale. Załeżnie od użytego portu, można obsierieć maksymalnie 16 kanałów (porty młodowane w CROSS/CEX.ou) (ub 32 kanały (moduł CROSS/CEX001), Do jednego kontolesa można zastosować klika modałów E10001, powietszawie w ms posło kumarczem klacka kanały					
Przykład przygotowany jest na rodzinę RX31, ale może być zaadaptowany do innych serii PACSy	lystems.				
Orientacyjny czas potrzebny na komunikację przy 32 kanałach, na każdym odczyt 20 rejestrów i komunikacyjne procesora CPE310 to wydłużenie czasu cyklu o kilkanaście ms.	v i zapis 10 rejestrów to czas dochodzący do 60ms na kanał. Obciążenie				
Ten blok funkcyjny może być stasowany do wielu modułow ETMOEO (dożyczy swrit RGSI), co sumarycznie umolitiwia obiuga więkazej takici kanałów ki 32. Pojedynczy kanał pozwala zarówno na odczy i zaplu danych, co emacza że nie jest konieczne otnierante osobnych kanałów do odczytu i zaplus z jednego serwera.					
Sława kłuczowe: Modbus TCP klient client kanał blok na jednym kanal					
Dołączone pliki					
Nazwa	Akcja				
Biblioteka (umożliwia dodanie bloków do własnego projektu) Poblerz					
Informator Techniczny: Komunikacja Modbus TCP klient Pobierz					

Pobrany plik należy zapisać do dowolnego folderu na dysku komputera. W tym momencie możemy uruchomić środowisko PAC Machine Edition, a następnie postępujemy zgodnie z następującymi krokami:

1. Otwieramy utworzony projekt. Przechodzimy do okna "Toolchest" i klikamy na niego prawym przyciskiem myszy, wybieramy "Import Drawer"

 W eksploratorze plików wskazujemy ścieżkę do wcześniej pobranego pliku .ZDRW i klikamy "Otwórz". Od momentu zakończenia instalacji mamy możliwość dodania urządzenia do projektu.

KONFIGURACJA MODUŁU ASTRAADA IO

W celu uzyskania szczegółowych instrukcji można zwrócić się do podręcznika produktu dostępnego na stronie internetowej wsparcia firmy Astor (<u>Wsparcie -> Astraada -> Astraada IO</u>).

Fabryczne ustawienia modułu AS70-R-MP-08DIO-P-M12:

- Protokół: Profinet
- Adres IP: 192.168.0.2

Domyślny protokół tej jednostki to Profinet, dlatego należy skonfigurować jednostkę do pracy jako Modbus TCP slave oraz zmienić adres IP zgodnie z procesem opisanym poniżej:

Zmiana protokołu z wykorzystaniem programu Astraada IO Configuration Tool

Program, tak jak podręcznik produktu, jest dostępny do bezpłatnego pobrania na <u>stronie wsparcia</u> <u>Astor</u>.

- 1. Uruchom program Astraada IO Configuration Tool,
- Podaj obecny adres IP urządzenia, a w następnym oknie wpisz "p", aby wybrać opcję zmiany protokołu (w przypadku zapomnienia adresu IP spójrz do podręcznika produktu na stronie wsparcia)
- 3. Wybór pozycji o numerze "4" spowoduje ustawienie protokołu Modbus TCP postępuj zgodnie z poleceniami pojawiającymi się w terminalu i pamiętaj o resecie zasilania po zakończeniu konfiguracji.

Uwaga! Po zmianie protokołu adres IP zostanie ustawiony na domyślny **192.168.0.2**

- 4. Po resecie zasilania i zaświeceniu się diody Us na zielono uruchom program ponownie. Podaj domyślny adres IP urządzenia, a w następnym oknie wpisz "i", aby wybrać opcję zmiany adresu IP
- 5. Postępuj zgodnie z poleceniami pojawiającymi się w terminalu i wprowadź następujące przykładowe ustawienia:

IP adres:	192.168.1.2
Maska podsieci:	255.255.255.0
Gateway:	192.168.1.1

Pamiętaj o resecie zasilania po zakończeniu konfiguracji.

Po drugim resecie moduł jest gotowy do pracy jako Modbus TCP slave i można przystąpić do konfiguracji sterownika.

KONFIGURACJA PROJEKTU W PAC MACHINE EDITION

Konfiguracja portu Ethernet

W drzewku projektowym przechodzimy do "Target1 -> Hardware Configuration -> PACSystems RSTi-EP CPE210" i przechodzimy do ustawień sterownika. W zakładce "Settings -> LAN 2 Mode" ustawiamy Ethernet

(0.0) EPXCPE210 × (0.0.0) Ethernet InfoViewer	LAN View				
Settings Scan Memory Faults RS-232 Scan Sets	s Power Access Control Time OPC UA				
Parameters					
Passwords	Enabled				
Legacy Client/Server Protocol Memory Access	Authenticated				
Stop-Mode I/O Scanning	Disabled				
Watchdog Timer (ms)	200				
Logic/Configuration Power-up Source	Always Flash				
Data Power-up Source	Always RAM				
Run/Stop Button	Enabled				
Power-up Mode	Last				
Modbus Address Space Mapping Type	Disabled				
MicroSD	Disabled				
Universal Serial Bus	Enabled				
LAN 1 Mode	Ethernet				
LAN 2 Mode	Ethernet				
Network Time Sync	None				
Enable UTC Offset	Disabled				
Day Light Savings Time(DST)	Disabled				

Przechodzimy do właściwości portu Ethernet i wchodzimy do zakładki LAN2, na potrzeby tego przykładu ustawiamy adres IP 192.168.1.1 (aby znajdował się w zgodnej podsieci co wyspa Astraada IO).

(0.0) EPXCPE210 🗙 (0.0.0) Ethernet ×	InfoViewer LAN View
Settings LAN 1 LAN 2	
Parameters	
IP Address	192.168.1.1
Subnet Mask	255.255.255.0
Gateway IP Address	0.0.0
IP Conflict Detection	Enabled

Konfiguracja połączenia Modbus TCP

Przechodzimy w drzewku projektowym do sekcji "Logic -> Program Blocks -> _MAIN". Z okna "Toolchest" przeciągamy do okna "_MAIN" blok "Kanal_TCP_RW"

AIN	(0.0) EPXCPE210	(0.0.0)	Ethernet	InfoViewer	LAN View			-	Toolchest		- 4 - 4
I		KANALTCP							Modbus_TCP_U	DFB	
I		2722				-		· _ !	🕫 🔏 Kanal TCP R		
I		NR ETH_C	×H			-			H A Kanal_TCP_RW		
I		TP1 Linnak							- /		
	· · ·		-	1.1							
I		IP2 Komut	<u>۲</u>								
	_	IP3 FAUL	r_								
			1	1							
		IP4		1.1							
	_	UNICID									
		BOLING.		1.1							
		Status_1									
	_	Numer							🗿 Drawers 🔏 Fav	orites	
			1	1					Simulator		- 4
		Status_1	4.00						CRU State		
	_	Numer_							Power OK Ru	n Fault	Force Outputs
		Chanter -									
1			1.0	1.1			1		CPU Config		
1		Burner_							Family	Not	available
- 0									Model	Not	available

W tym momencie należy poprawnie uzupełnić parametry wejściowe i wyjściowe bloku, ich znaczenie jest opisane w poniższej tabeli a w razie wątpliwości można zwrócić się do informatora zawartego do artykułu z którego pobraliśmy plik .zdrw .

Parametr	Opis	Format
NR	Numer kanału TCP	INT
IP1	Pierwszy oktet adresu IP	INT
IP2	Drugi oktet adresu IP	INT
IP3	Trzeci oktet adresu IP	INT
IP4	Czwarty oktet adresu IP	INT
Unit_ID	Parametr Unit Identifier	INT
Numer_OPEN	Numer rejestru statusowego OPEN	INT
Status_OPEN	Rejestr statusowy OPEN	INT
Numer_CLOSE	Numer rejestru statusowego CLOSE	INT
Status_CLOSE	Rejestr statusowy CLOSE	INT
Numer_ READ	Numer rejestru statusowego READ	INT
Status_ READ	Rejestr statusowy READ	INT
Numer_ WRITE	Numer rejestru statusowego WRITE	INT
Status_ WRITE	Rejestr statusowy WRITE	INT
SYSID	Lokalizacja portu Ethernet (nr gniazda)	DINT
TASK	0 dla ETM001, 65536 dla portu w CPE3xx	DINT
Bity_statusowe	Adres początkowy bitów statusowych Ethernet (tablica 80 bitów)	BOOL
Zeruj_licznik_ramek	Polecenie zerowania licznika ramek	BOOL
R_FUN	ODCZYT: nr funkcji Modbus	INT
R_Adr_Lokal	ODCZYT: Adres lokalnej pamięci %W	INT
R_Adr_Serwera	ODCZYT: Adres pamięci w serwerze	INT

R_ilosc	ODCZYT: ilość danych	INT
W_FUN	ZAPIS: nr funkcji Modbus	INT
W_Adr_Lokal	ZAPIS: Adres lokalnej pamięci %W	INT
W_Adr_Serwera	ZAPIS: Adres pamięci w serwerze	INT
W_ilosc	ZAPIS: ilość danych	INT
DLAY	Opcjonalne dodatkowe opóźnienie w transmisji [ms]	DINT
Restart	Restart komunikacji na tym kanale	BOOL
ETH_Gotowy	Potwierdzenie gotowości Ethernet	BOOL
Licznik_poprawnych_ramek	Licznik poprawnych ramek	DINT
Komunikacja_OK	Sygnalizacja poprawnej komunikacji na tym kanale	BOOL
FAULT	Błąd zgłoszony przez polecenie COMMREQ	BOOL

Definicja parametrów SYSID i TASK dla poleceń COMMREQ

SYSID to numer gniazda, w którym jest zainstalowany moduł Ethernet, a TASK to parametr, który należy ustawić na wartość 0 w przypadku używania modułu IC695ETM001 lub 65536 w przypadku użycia portu Ethernet wbudowanego w CPU.

W razie braku pewności co do numeru SYSID można spojrzeć na parametr "Adapter Name" w zakładce "Settings" właściwości portu Ethernet sterownika

	_MAIN (0.0) E	PXCPE210	(0.0.0) Ethernet × I	nfoViewer	LAN View			
I	Settings LAN 1	LAN 2						
I		Paramete	ers					
	Configuration Mod	e		TCP/IP				
I	Adapter Name			0.0.0				
I	Status Address			%100001				
I	Length			80				
I	1/0 Scan Set			1				
	Settings > Ad (Read-only.) T submodule's lo ss = subslot n Ethernet Globa	apter Nar The Adapte ocation in t umber. The al Data.	ne r Name is an <mark>r.s.s:</mark> he rack system, w e Adapter Name is	string that here r = rat associated	t represent ack number I with the I	s the Ether , s = slot n P address u	net umber, and ised in	
	Value set to 0.	.1.0.						

Definicja parametrów bitów statusowych dla poleceń COMMREQ

W tym przypadku należy ponownie spojrzeć do właściwości portu Ethernet, który wykorzystujemy do komunikacji z wyspą i sprawdzić do jakiego adresu przypisany jest parametr "Status Address" w tym przypadku jest to %100001.

Definicja parametrów otwarcia i zamknięcia kanałów (NUMER_OPEN, STATUS_OPEN itd.)

Bloki COMMREQ operują na przestrzeni pamięci wewnętrznej %W. W celu jej użycia koniecznym jest zadeklarowanie jej rozmiaru we właściwościach sterownika (zakładka "Memory") np. 2048.

_MAIN (0.0) EPXCPE210 × (0.0.0) Ethernet Ir	nfoViewer LAN View			
Settings Scan Memory Faults RS-232 Scan Sets	Power Access Control Time			
Parameters				
Reference Points				
%I Discrete Input	2048			
%Q Discrete Output	2048			
%M Internal Discrete	4096			
%S System	128			
%SA System	128			
%SB System	128			
%SC System	128			
%T Temporary Status	256			
%G Genius Global	1280			
Total Reference Points	10240			
Reference Words				
%Al Analog Input	64			
%AQ Analog Output	64			
2B Begister Memory	1024			
%W Bulk Memory	2048			
I otal Heference Words	3200			
	1			

Blok funkcyjny realizuje polecenia otwarcia kanału (OPEN), zamknięcia kanału (CLOSE), czytania (READ) i zapisu na kanale (WRITE). Każde z tych poleceń wymaga przypisania unikalnego rejestru w pamięci kontrolera PACSystems, który będzie pełnił rolę statusu polecenia. Blok funkcyjny operuje na przestrzeni typu %W. Ze względu na wymogi poleceń COMMREQ, jakie są użyte wewnątrz bloku funkcyjnego Kanal_TCP, każdy z rejestrów statusowych określa się podwójnie:

- podając numer rejestru,
- podając zmienną przypisaną w pamięci %W do adresu podanego powyżej.

Dla konkretnego polecenia (np. OPEN) numer rejestru musi zgadzać się z adresem rejestru statusowego. Przykładowo:

Definicja parametrów funkcji odczytu i zapisu

Numery funkcji są zgodne ze standardem Modbus TCP:

Nr. funkcji	Nazwa funkcji			
1	Read Coils			
2	Read Discrete Inputs			
3	Read Holding Registers			
4	Read Input Register			
5	Write Single Coil			
6	Write Single Register			
15	Write Multiple Coils			
16	Write Multiple Registers			

Zastrzeżenie

Firma ASTOR dołożyła starań aby blok funkcyjny działał poprawnie, jednak decyzja o jego użyciu i jego ostateczna formuła zależy od Programisty lub Użytkownika systemu sterowania.

Konfiguracja danych do wymiany

Połączenie z tym urządzeniem może zostać skonfigurowane do wymiany 3 rodzajów informacji:

Modbus TCP – mapowanie przestrzeni wejść								
Adres (Discrete Input)	10008	10007	10006	10005	10004	10003	10002	10001
Adres (Input registers)	30001.7	30001.6	30001.5	30001.4	30001.3	30001.2	30001.1	30001.0
Stan wejść	Port 3 Pin 2	Port 3 Pin 4	Port 2 Pin 2	Port 2 Pin 4	Port 1 Pin 2	Port 1 Pin 4	Port 0 Pin 2	Port 0 Pin 4
Adres (Discrete Input)	10016	10015	10014	10013	10012	10011	10010	10009
Adres (Input registers)	30001.15	30001.14	30001.13	30001.12	30001.11	30001.10	30001.9	30001.8
Status Modułu				Zbyt wysokie napięcie US	Zbyt wysokie napięcie UA	Zbyt wysoka temp. pracy	Zbyt niskie napięcie US	Zbyt niskie napięcie UA

Modbus TCP – mapowanie przestrzeni wyjść								
Adres (Coil)	8	7	6	5	4	3	2	1
Adres (Holding registers)	40001.7	40001.6	40001.5	40001.4	40001.3	40001.2	40001.1	40001.0
Stan wyjść	Port 3 Pin 2	Port 3 Pin 4	Port 2 Pin 2	Port 2 Pin 4	Port 1 Pin 2	Port 1 Pin 4	Port 0 Pin 2	Port 0 Pin 4

Na potrzeby tego przykładu uzupełniono blok uzupełniono jak poniżej:

W tej konfiguracji:

- Odczytujemy z modułu Astraada IO adresy 30001-30002 i przypisujemy je do pamięci lokalnej %W200-201 (stanu wejść i odczyt statusu)
- Wysyłamy z pamięci lokalnej %W202 dane do adresu 40001 na module Astraada IO (przypisanie wyjść)

POTWIERDZENIE KOMUNIKACJI

Po wgraniu projektu i podłączeniu przewodu łączącego wybrany port sterownika z modułem komunikacja powinna zostać poprawnie nawiązana. Po podłączeniu czujników, w bajcie danych wejściowych widocznym jest, że zachodzi poprawna wymiana danych.

ewer LAN View	
	Address
00010100 00000000 00010110	%₩ 00200

Należy tutaj zauważyć istotną cechę wcześniej opisanych portów adaptacyjnych:

 wystawienie stanu wysokiego np. bitu 4 w %W202 (tj. rozkazanie modułowi używania Pin 4 na Port 2 jako DO) zawsze powoduje ustawienie stanu wysokiego na korespondującym bicie bajta %W200

Innymi słowy wszystkie bity ustawione na stan wysoki w bajcie %W202 mają również stan wysoki w bajcie %W200 natomiast odwrotna sytuacja nie zawsze jest prawdziwa.

Takie zachowanie spowodowane jest faktem, że pojawienie się napięcia wyjściowego na pinie jest równocześnie odczytywane przez czujnik wejścia.